If it's not what You are looking for type in the equation solver your own equation and let us solve it.
28w^2+56w=0
a = 28; b = 56; c = 0;
Δ = b2-4ac
Δ = 562-4·28·0
Δ = 3136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3136}=56$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(56)-56}{2*28}=\frac{-112}{56} =-2 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(56)+56}{2*28}=\frac{0}{56} =0 $
| -30=-6(p-10) | | 12x+17x=9 | | (x+8)=(3x-38) | | 8n+6=7n-40 | | (x+7)/7=7 | | 4(m+7)=12 | | 0.005/x=0.1 | | 9×=6x-15 | | 6x-3+2x+8=8x+28 | | -19x-17=-150-19x | | 5(2x)=25x= | | X+10=30x-20x+40 | | -3/5x+x+8=209/25 | | 5=7m+8m+2 | | 9(n-87)=99 | | 2(4x+8)=4(x-8) | | 2w+1=-2w+4 | | 3(n-20)=15 | | 14-7x=6-6x | | 3(7-6x)+4=5(6+3x) | | 10x-20x+5=25 | | 2(4x+8)=4(x-8 | | X7-x3=0 | | x=-1+1/4 | | 2g=-9 | | 70t=84 | | 5(4x+8)=6(6=3x) | | y/9=7/8 | | 2(y+8)=14 | | 2,500+450x=125+680x | | x=-2+3/4 | | 1/4g-21=-11 |